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1 Introduction

This edition includes a summary of the major projects that have occupied the Single-Chip Cloud Computer
(SCC) ranging from August 2011 up to March 2013. The SCC is an experimental processor created by Intel
Labs. It is a 48-core “concept vehicle” created as a platform for many-core software research [7]. The purpose
of the current edition is to familiarize any interested party with the work that has been performed at MicroLab
using the aforementioned piece of hardware.

In the current report, we will not be delving into the technical details of the SCC’s architecture and pro-
gramming style. Any interested reader is encouraged to inspect related publications for in-depth understanding
of this processor [7, 13]. However, we believe that a brief description is deemed necessary, at least to cover
some key terminology: The SCC processor consists of 48 P54C cores that are interconnected with a high speed
mesh network. The cores are organized in pairs called tiles. SCC cores feature a private memory space like
typical systems. However, at the lowest level, a small memory bank is assigned to each core for the submission
and retrieval of messages. This memory bank is called Message Passing Buffer (MPB) and enables inter-core
communication.

The SCC chip is placed on a board that communicates with a standard server (Management Console Personal
Computer – MCPC) through a PCIe cable. The MCPC is responsible for dispatching processes to user-defined
cores through pssh. Parallel code is written on the MCPC, using functions of a message passing library, called
RCCE (pronounced “rocky”) [14]. This library enables synchronization between cores, message passing and
dynamic frequency and voltage scaling [13].

Each of the following Sections is dedicated to a single research topic that occupied the SCC platform and has
been authored by the responsible researcher in each case. Dissemination of the discussed topics to conferences
or workshops is cited accordingly. The interested reader can follow these citations for further information about
each topic. Alternatively, contacting the responsible researcher is also encouraged. At the end of each Section
we list contact information for each researcher.

In the context of our work, the SCC infrastructure is used under the supervision of the Principal Investigator,
Dr. Antonis Papanikolaou. The co-authors of this edition would like to thank Prof. Dimitrios Soudris from
MicroLab-ECE-NTUA and Prof. Elias S. Manolakos from DIT-UOA, for their additional supervision. Finally,
on behalf of all involved researchers, we would like to thank Dr. Xavier Vera and Mr. Enric Herrero of Intel
Labs Barcelona for enabling use of the SCC; Intel Labs Braunschweig for providing the related hardware and
the Intel MARC communities.

Contact Person: Dimitrios Rodopoulos – PhD Researcher at NTUA/ICCS – drodo@microlab.ntua.gr
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2 Hypervised SPICE for Massive Netlists and Workloads

Abstract: Advances in modern computer architecture have drastically pushed application development
to parallel programming. Industry standard SPICE applications have also followed this trend and multi-
threaded execution has led to significant advances in the field of circuit simulations limited only by the
memory of the respective runtime systems. Therefore there is a need for flexible memory conservative
and scalable techniques for parallel application development. This project attempts to attack this issue
with the use of a versatile development framework applied in the field of circuit simulations. One of the
platforms used to prove the versatility of the framework is the SCC.

Ever since the begining of circuit design there has been a need for circuit simulations. Nowadays digital
circuits are an integral part of everyday life. Everything from smartphones to super computers depends on them.
Therefore the need for detailed circuit simulations is at it’s peak. The field of circuit simulations has constantly
grown more computationally intensive over the years. What’s more, modern reliability models require massive
computational resources in order to complete the simulation.

In order to fill the need for fast and accurate simulations there are many approaches to the optimisation of
SPICE applications . Single thread optimisations have been performed over the years on the SPICE kernels that
run the simulations [15]. Since multithreaded execution has been introduced developers realised that parallel
programming is a promising field and with the advances in modern processors it is only logical that SPICE
applications would follow the trend and try to harness the new processing potential [16]. There have also been
attempts to run SPICE on specialised hardware such as FPGAs [9] or GPUs [6] with promising results. Many
steps have been taken and significant advances have been made, though little is done to minimise memory usage
on large netlists and massive workloads, thus many simulations stop to a halt due to bad alloc errors [4].

This project attempts to attack the issue from a different angle. Instead of working in the SPICE kernel
source code the framework uses a wrapper and remains agnostic regarding the executable code. In order to
achieve that we adopt two methods of data partitioning Workload and Node tearing [12]. When it comes to
input signals one can easily comprehend the concept of Workload tearing which consists of signal partitioning
on the axis of time. What must be pointed out is that the partitioning method is sophisticated enough to
ensure that the accuracy of the simulation is not compromised. On top of that we employ another method
of data partitioning referenced as Node tearing. The initial netlist is broken down to components that have
directed acyclic dependencies between them. The intermediate results are forwarded by the framework among
the components. This is represented in a task graph parsed by the framework, enabling the distribution of the
tasks described, over a set of execution nodes. Running the simulations independently minimizes the need for
massive memory allocation requests thus allowing the simulations to complete.
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Figure 2.1: Framework concept and results comparison
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Figure 3.2: Distributed Run-Time Resource Management on Single-Chip Cloud Computer (SCC)

3 Distributed Run-Time Resource Management

Abstract: Prevalent solutions for modern embedded systems and general computing employ many pro-
cessing units connected by an on-chip network leaving behind complex superscalar architectures. Here,
we couple the concept of distributed computing with parallel applications and present a workload-aware
distributed run-time framework for malleable applications. The framework is responsible for serving in
a distributed way and at runtime, the needs of malleable applications, maximizing resource utilization
avoiding dominating effects and taking into account the type of processors supporting platform hetero-
geneity, while having a small overhead in overall inter-core communication. The framework has been
implemented as a run-time service on the SCC and has been compared against a state-of-art run-time
resource manager. Experimental results showed that our framework has on average 70% less messages,
64% smaller message size and 20% application speed-up gain.

The run-time resource management paradigm has been revealed as a key challenge to modern multi-core
systems and it has become prominent due to the run-time dynamism of modern parallel applications and
platforms. In large-scale execution environments such as multi-cluster systems and grids, resource availability
may vary due to resource failures and because resources may be added to or withdrawn from such environments
at any time thus making the resource allocation problem significant to the overall system performance. In
addition, dedicated resources or fixed resource allocation strategies fail to provide the desired high performance
that applications expect from large pools of resources.

In this work, we couple the concept of distributed computing with parallel applications and we present a
workload-aware distributed run-time framework for malleable applications running on many-core platforms.
The proposed framework is based on the idea of local controllers and managers while an on-chip intercommuni-
cation scheme ensures decision distribution. The presented framework is responsible (i) for serving, at run-time,
the needs of malleable applications, in terms of processing cores; (ii) makes sure that the application will get
the optimum number of cores avoiding dominating effects; (iii) it takes into account the type of processors best
utilizing any platform’s heterogeneity; and (iv) it has a small overhead in overall core intercommunication.

Figure 3.2b presents the average application speed-up using the speed-up function presented in [11]. Speed-
up is defined as the ratio of the total number of turnarounds performed for all applications divided by the total
workload. The presented framework achieves on average 20% better application speed-up than DistRM. This
can be explained by the fact that in the presented framework cores are not disturbed so often by messages
during their application execution and thus completing the applications faster. On the other hand, due to
the large number of messages sent by the application agents in DistRM, cores stop their functionality more
frequently in order to answer to these messages, thus delaying the execution.

Contact Person: Iraklis Anagnostopoulos – PhD Researcher at NTUA/ICCS – iraklis@microlab.ntua.gr
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4 SDC Mitigation on SCC Streaming Applications

Abstract: This work presents a hybrid HW-SW mitigation scheme against Silent Data Corruptions
(SDCs) on the SCC platform. The methodology assumes error detection implemented in hardware (HW).
Also, the MPBs of each core are assumed to implement both error detection and mitigation in HW. Upon
error detection, a software (SW) rollback is triggered, while retrieving error-free copies of corrupt data
from the closest MPB. Given the context of streaming applications, the processing time invested in
mitigation needs to be reclaimed. The dynamic frequency scaling utilities of the target platform are used
to reclaim that slack, depending on the level of SDC aggression.

A usual distinction between erroneous states found in digital systems is between permanent and transient
errors [22]. We focus on the latter category, namely the corruption of the logic state of a circuit node because
of an intermittent phenomenon. Typical examples of such errors are Single- or Multiple-Event Upsets caused
by cosmic particles or erroneous logic states due to IR-drops in the power or ground grid of the platform [24].
In the past, transient errors of that sort where exclusively mitigated in HW. However, with decreasing device
dimensions, the mitigation overhead purely in HW is becoming too extreme [10].

Our focus is narrowed down to SDCs, which affect the data plane of the target system, without altering the
control flow of the executing application. SDCs are injected at runtime in the application’s data plane. The
intensity of SDCs is abstracted by the InjectionRatedata metric, representing the probability of a data plane
bit being flipped [17]. Assuming binary corruption of separate bits as independent events, we can calculate the
probability for a streaming data structure to be corrupt.

The target application of this work is a data-parallelized MJPEG decoder. A single frame decoder [20]
occupies a triplet of SCC cores (execution nodes), hence we end up with 16 JPEG decoders decoding in parallel
the frames of an MJPEG video benchmark. This being a streaming application, we can identify the data
required by each execution node of each decoder instance. An error-free copy of each key data structure is
kept in the local MPB once the former is created. That way, assuming that the MPB is HW-protected against
transient errors, we can retrieve the error-free copy upon error detection. This retrieval is SW-controlled, by
altering the source code of the streaming application (see Figures 4.3a).

Even if demand driven, the SW rollbacks are consuming processing time. Especially in case of increased
InjectionRatedata values, we need to reclaim the processing time invested in mitigation, in order not to affect
application performance. We use the Dynamic Frequency Scaling (DFS) of the chip to accelerate a portion
of the execution, in order to meet the specification about decoded frames per second. Temporarily increasing
the frequency, comes with a power consumption penalty, as illustrated in Figure 4.3b. We have explored the
average power impact that slack reclaiming with DFS has under different InjectionRatedata [18]. Absorbing
mitigation overhead using DFS is upper bounded by the highest frequency that the SCC cores can achieve.
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Figure 5.4: Data flow and communication between cells and compartments of the target cell

5 Scalable Simulation of the Inferior Olivary Nucleus

Abstract: This work contains a model of the inferior olive brain cells network, an important subsystem
for the functionality of the cerebellum, as depicted in a mesh, with varying network size and level of
interconnectivity between the cells. The cell model is comprised of 3 functional units (compartments),
representing the dendrite, soma and axon parts of the biological neuron. These units should be mapped
to SCC tiles accordingly and communicate with each other. The network is organized as a typical mesh.
Using outside stimuli and the previous cell states as input parameters, the voltage output of each cell
compartment is computed. Communication and computational costs are prohibitive of simulating large,
complicated networks so far, thus efforts to increase simulation speed is of great value.

The human brain processes data in a very different way than typical man-made computing systems. Brain
cells process data using the propagation of spikes between a network of neuron cells. Information is encoded
in the spikes’ frequency, amplitude and shape pattern. The exact details of these mechanisms are still heavily
debated [23]. The cerebellum has the greatest concentration of neurons in the brain and is imperative for motor
learning and synchronization of body movement. In particular, the inferior olive cerebellum subsystem is of
great importance in such functions and, thus, a major subject of scientific debate [3]. An application simulating
the voltage levels of the olive cells is highly valued and needed, as well as computationally taxing. The porting
of a scalable model [1, 8] on a high-computational capacity platform as the SCC is described below.

The inferior olive cells are represented in a mesh of variable dimensions where each element is a cell of
the three compartments(or compartments in neuroscience), the soma, the axon and the dendrite. Each mesh
element can be fed by an input current as external stimulus. As shown in Figure 5.4, the dendrite is the
compartment that operates as the cell input. It models connectivity between neighboring cells (by receiving
voltage inputs from other cells) and is fed the previous cell state and external input stimuli. The compartments
of a single cell also communicate with each other (some voltage level). After information of the previous step
(soma voltages) is gathered and input of the current step is stored in a buffer, the compartment computes all
relevant parameters to store their new state and the simulation advances for as many steps as indicated by the
simulation process. The voltage outputs of each cell for every simulation step are recorded in an output file.

Currently the output evoked by the input stimuli is a certain kind of spike typical of the IO cell (complex
spike) that triggers once at a particular time period. The input current values are hard-coded and the correct
response values are recorded and compared against a reference output. However, a possible extension of the
work will incorporate different input stimuli completely controlled by the user of the application so as to provide
more feedback on the behavior of the simulated inferior olive cells. Furthermore, communication between the
cells is restricted to immediate neighbors. Higher degrees of interconnectivity can be pursued to replicate real-
life cell communication, which will greatly increase the value of the application. In such case, the increase in
communication cost needs to be weighed. Thus the computational capacities of the SCC will be greatly tested
and exploited, even more than by simply increasing the mesh size.

Since the soma compartment has workload roughly equal to the sum of the dendritic and axonal workloads,
the project plans on using SCC tiles: one core handles soma computation and the other one is assigned the
dendrite and axon compartments. This will also exploit the locality of two cores belonging to one tile. How-
ever, since the dendritic compartment is responsible for communicating with neighboring cells and registering
incoming stimuli, if greater amount of inter-connectivity between cells is pursued, the dendrite may exhibit
greater workload than the soma and different porting patterns will be explored.

Contact Persons: Giorgos Chatzikonstantis – Undergrad. at NTUA – mightyfelix@hotmail.com
Dr. Christos Strydis – Neuroscience Department, Erasmus Medical Center – c.strydis@erasmusmc.nl
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Figure 6.5: Performance comparison and speedup achieved by SCC port of TM-align

6 Protein Structure Comparison on Many-Core NoCs

Abstract: This work presents rckAlign, an implementation of the popularly used TM-align PSC algo-
rithm, designed for the Single-Chip Cloud Computer (SCC). We developed a skeleton library, rckskel,
and implemented a master-slaves variant of TM-align to exploit the parallelism offered by the SCC.
We observed a 44-fold speedup relatively to a single-core of the SCC. A key aspect of the performance
of rckAlign, is the almost linear speedup achieved with the number of SCC cores used as slaves. The
method presented can easily be applied to other PSC algorithms and extended to running multiple PSC
algorithms within the same SCC chip.

A typical task in bioinformatics is comparison of the structure of a protein with a database of known protein
structures, one-to-many protein structure comparison (PSC), or when a set of multiple proteins is of interest,
comparison of their structures to a whole database of known protein structures, many-to-many PSC. The unit
operation in both these forms of PSC is the comparison of structures of a pair of proteins [21]. Computational
demand of the one-to-many and many-to-many PSC problem are a result of factors such as: exponential
growth of structural proteomics databases, pairwise protein structure comparison is computationally intensive
and several pairwise comparison approaches are typically of interest to the researcher [2].

Algorithmic skeletons [5] allow a programmer to develop algorithms without specifying architecture depen-
dent details. By nesting and combining skeletons desired level of parallelism can be introduced into different
PSC methods. Using algorithmic skeletons allows programs to fully exploit the parallelism afforded by many-
core processor architectures, while retaining the flexibility needed for experimenting with the level of parallelism
and shared tasks (such as rotation of structures).

In order to facilitate development of PSC algorithms targeted for the SCC, we built a C library. The library
we built is a small parallel programming library which implements algorithmic skeletons - SEQ, PIPE, MAP,
FARM - in addition to providing convenient wrappers for common RCCE related tasks. Allocation of a core to
a job is performed dynamically by the library, based on the number of jobs and the number of cores available
for processing. A master-slaves implementation of the C code of TM-align, was developed using the FARM
skeleton of the rckskel library [19].

As shown in Figure 6.5a faster processing times are achieved by rckAlign as compared to the distributed
port, where a master process is running on the MCPC. There are two main reasons for this behavior: (a)
disk access through the Network File System (NFS) creates a bottleneck when multiple processes are trying to
access the data, and (b) high environment setup costs incurred while issuing remote processing.

As can be seen in Figure 6.5b an almost linear speedup is achieved by the master-slaves port of TM-align.
We also observed that the larger the dataset the higher the speedup observed. These results suggest that many-
core NoCs with fast interconnection networks and faster processor cores than the SCC will be ideal candidates
for delivering high performance for all-to-all PSC tasks applied to large size protein databases, as needed for
combinatorial drug design.

Contact Person: Anuj Sharma – PhD Candidate at UoA – asharma@di.uoa.gr
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